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ABSTRACT 
 

In this paper, an optimization methodology proposed for the achievement of optimal 

(minimum) structural weight for flexible-base shear buildings under earthquake excitation. 

The underlying soil is considered as a homogeneous half-space which is replaced by a 

simplified 3-DOF system, based on the concept of Cone Models. Through intensive 

nonlinear dynamic analyses of buildings with consideration of soil-structure interaction 

(SSI) effect subjected to a group of artificial earthquakes, and using uniform distribution of 

inter-story ductility demand over the height of structures, an optimization procedure for 

seismic design of inelastic shear-buildings incorporating SSI effects is developed to achieve 

minimum structural weight. It is shown that the seismic performance of such a structure is 

superior to those designed by code-compliant seismic load pattern such that the optimized 

structures experience significantly less structural weight as compared with those designed 

based on ASCE/SEI 7-10 load pattern. 

 

Keywords: Soil-structure interaction; optimal design; inelastic behaviour; seismic code; 

optimal structural weight. 

 

 

1. INTRODUCTION 
 

In force-based design procedure the distribution of story stiffness and strength along the 

height of the structures are designed primarily based on the static forces that are mainly 

based on elastic structural behaviour analyses of fixed-base structures under seismic lateral 

forces and account for inelastic behaviour in a somewhat indirect manner. The height-wise 

distribution of these lateral load patterns from various standards such as EuroCode 8 [1], 

Mexico City Building Code [2], Uniform Building Code [3], ASCE/SEI 7-10 [4], and 

International Building Code, IBC 2012 [5] depends on the fundamental period of the 

structures and their mass. They are derived primarily based on elastic dynamic analysis of 
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the corresponding fixed-base structures without considering soil-structure interaction (SSI) 

effect. The seismic lateral load patterns in all aforementioned provisions are based on the 

assumption that the soil beneath the foundation is rigid, and hence the influence of SSI effect 

on load lateral pattern is not taken into account. The adequacy of using the code-specified 

lateral load patterns for fixed-base building structures have been investigated during the past 

two decades [6-12]. Recently, several studies have been conducted by researchers to 

evaluate and improve the code-specified design lateral load patterns based on the inelastic 

behavior of the structures [10, 12-15]. However, all studies have been concentrated on the 

different types of structures with rigid foundation, i.e., without considering SSI effects. 

Recent studies have demonstrated that SSI can significantly affect the seismic responses of 

structures located on soft soils by changing the overall stiffness and energy dissipation 

mechanism of the systems [16-23]. In fact, a soil-structure system behaves as a different 

system having longer period and generally higher damping due to energy dissipation by 

hysteretic behavior and wave radiation in the soil.  

More recently, several studies have been conducted by researchers to improve the code-

specified design lateral load patterns based on the inelastic behavior of the structures [8-10, 

12-15]. They proposed new lateral load patterns for various types of fixed-base systems 

based on different optimization techniques. However, nothing has been performed yet on 

optimum seismic design of buildings with consideration of SSI effects. For the first time, 

Ganjavi and Hao (2013) [24] developed a new optimization algorithm for optimum seismic 

design of “elastic” shear-building structures with SSI effects. The adopted method has been 

based on the concept of uniform deformation distribution proposed by Moghadam and 

Hajirasouliha (2006) [10] for fixed-base shear building structures. Based on numerous 

optimum load patterns derived from numerical simulations and nonlinear statistical 

regression analyses, a new load pattern for elastic soil-structure systems with shallow 

foundation has been proposed. They showed that using the proposed load pattern could lead 

to a more uniform distribution of deformations over the height of structures. The designed 

structures also experience up to 40% less structural weight as compared with the code-

compliant or aforementioned optimum patterns proposed for fixed-base structures [24]. 

In the present study, by performing intensive numerical simulations of responses of 

inelastic soil-structure shear buildings with various dynamic characteristics and SSI 

parameters an optimization methodology proposed for the achievement of minimum 

structural weight for flexible-base buildings under earthquake excitation. 

 

 

2. SOIL-STRUCTURE MODELING AND GROUND MOTIONS 
 

The studied superstructure model is based on the structural modeling explained by FEMA 

440 (2005) [25], in which, in some cases engineers can simplify complex structural models 

into MDOF shear-building models which are called stick models. The well-known shear-

beam model which is one of the most frequently used models that facilitate performing a 

comprehensive parametric study is utilized here as superstructure model [12, 21, 22, 24, 26]. 

In the MDOF shear-building models utilized in the present study, each floor is assumed as a 

lumped mass to be connected by elasto-plastic springs. Story heights are 3.2 m and total 
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structural mass is considered as uniformly distributed along the height of the structure. A 

bilinear elasto-plastic model with 2% strain hardening in the force-displacement relationship 

is used to represent the hysteretic response of story lateral stiffness. In all MDOF models, 

lateral story stiffness is assumed as proportional to story shear strength distributed over the 

height of the structure. Five percent Rayleigh damping is assigned to the first mode and the 

mode in which the cumulative mass participation is at least 95%. In this investigation, an 

ensemble of 15 synthetic earthquake ground motions with different characteristics is 

compiled. All the selected ground motions are obtained from earthquakes with magnitude 

greater than 6 having closest distance to fault rupture more than 15 km without pulse type 

characteristics. The selected ground motions are components of six earthquakes including 

Imperial Valley 1979, Morgan Hill 1984, Superstition Hills 1987, Loma Prieta 1989, 

Northridge 1994 and Kobe 1995, and have shear wave velocity ranging from 90 to 350 m/s. 

To be consistent, using SeismoMatch software [27] these seismic ground motions are 

adjusted to the elastic design response spectrum of IBC-2012 with soil type E. 

Using the sub-structure method, the soil can be modeled separately and then combined to 

establish the soil-structure system. The soil-foundation element is modeled by an equivalent 

linear discrete model based on the cone model with frequency-dependent coefficients and 

equivalent linear model [28]. The foundation is considered as a circular rigid disk and the 

flexibility of the foundation is not taken into account. Cone model based on the one-

dimensional wave propagation theory represents circular rigid foundation with mass fm  and 

mass moment of inertia fI  resting on a homogeneous half-space. In lieu of the rigorous elasto-

dynamical approach, the simplified cone model can be used with sufficient accuracy in 

engineering practice [29]. The foundation mass, fm , is assumed such that foundation uplift 

does not occur due to the design earthquake load according to ASCE7-10 [4]. Only the inertial 

part of the SSI is considered in this study i.e., the kinematic interaction effect is not included 

assuming that the rigid foundation lies on the surface of the soil with no embedment and is 

undergone to vertically incident plane shear with particle motion in the horizontal direction. 

Typical shear-building models of fixed-base and flexible-base systems used in this study are 

shown in Figure 1. The sway (h) and rocking (φ) degrees of freedom are defined as 

representatives of translational and rocking motions of the shallow foundation, respectively, 

disregarding the slight effect of vertical and torsional motion. The stiffness and energy 

dissipation of the supporting soil are represented by springs and dashpot, respectively. In 

addition, soil material damping is assumed as commonly used viscous damping so that more 

intricacies in time-domain analysis are avoided. To consider the frequency-dependent 

rotational spring and dashpot coefficients, the additional internal rotational degree of freedom, 

θ, can be assigned to a polar mass moment of inertia, m , and connected to the foundation 

mass with zero-length element using a rotational dashpot. Also, to modify the effect of soil 

incompressibility, an additional mass moment of inertia M   can be added to the foundation 

for   greater than 0.33 [28]. In this case the dilatational shear wave velocity, pV  is limited to 

2 sV  [29]. The coefficients of springs and dashpots for sway and rocking used to define the 

soil-shallow foundation model are summarized as follows: 
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where hk , hc , k   and c  are sway stiffness, sway viscous damping, rocking stiffness, 

and rocking viscous damping, respectively. Equivalent radius and area of cylindrical 

foundation are denoted by r  and 0A . Besides,  ,  , pV  and sV are respectively the specific 

mass density, Poisson’s ratio, dilatational and shear wave velocity of soil. To consider the 

soil material damping,
0 , in the soil-foundation element, each spring and dashpot is 

respectively augmented with an additional parallel connected dashpot and mass.  

 

 
Figure 1. Typical shear-building models (a) fixed-base model and (b) flexible-base model 
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3. GOVERNING INTERACTING PARAMETERS 
 

The response of the soil-structure system essentially depends on the size of structure, 

dynamic characteristics of the soil and structure, the soil profile as well as the applied 

excitation. It has been shown that the effect of these factors can be best described by two 

parameters of the non-dimensional frequency and aspect ratio [30]. To consider soil 

flexibility in a given system, the non-dimensional frequency, 
0

  ( )
fix s

a H V
0a  , is defined 

as an index for the structure-to-soil stiffness ratio, where fix and H denote the circular 

frequency of the fixed-base structure and the effective height of the superstructure, 

respectively. Stewart et al. (1999) [31] proposed that the most important parameter 

controlling the significance of inertial SSI is ( )
fix s

H T V , and that the effects of inertial SSI are 

not generally important for small values of ( )
fix s

H T V . Not that if this parameter is multiplied 

by 2π, the 0a parameter defined above will be obtained. It can be shown that the practical 

range of 
0a  for conventional building structures is from zero for the fixed-base structure to 

about 3 for the case with severe SSI effect [32]. Besides, H  is the effective height of 

structure corresponding to the fundamental mode properties of the MDOF building. Aspect 

ratio of the building is defined as H r . Other parameters to conduct a parametric study for 

soil-structure systems can be defined as follows: Inter-story displacement ductility demand 

of the structure is defined as m=  yD D , where mD and yD  are the maximum inter-story 

displacement demand resulted from a specific earthquake ground motion excitation and the 

yield inter-story displacement corresponds to the structural stiffness of the same story, 

respectively. Structure-to-soil mass ratio is defined as 2= ,totm m r H  where is total 

height of the structure. Foundation-to-structure mass ratio .f totm m  In the present study, the 

foundation mass ratio is assumed to be equal to the story mass of the MDOF buildings. As 

mentioned above, the first two factors, i.e., 0a  and H , affecting the responses more 

prominently are usually considered as the governing parameters which define the main SSI 

effect. µ controls the inelastic behavior of the structure. The other parameters, having less 

significance, may be set to some typical values for conventional buildings [28, 33]. In this 

study, The Poisson’s ratio is considered to be 0.4 for the alluvium soil and 0.45 for the soft 

soil. Also, a damping ratio of 5% is assigned to the soil material. 

 

 

4. ASCE-7-10 SEISMIC DESIGN LATERAL LOADING PATTERN FOR FIXED-

BASE BUILDINGS 
 

The general formula of the lateral load pattern specified by the aforementioned seismic 

codes is defined as: 

H



B. Ganjavi 

 

500 

1

.    
k

i i
i bn

k

j j

j

w h
F V

w h




  

 
(3) 

 

where xF and bV  are respectively the lateral load at level i and the total design lateral 

force (Base shear); jw  and iw  are the portion of the total gravity load of the structure 

located at the level j or i; jh  and ih  are the height from the base to the level j or i; n is the 

number of stories; and k is an exponent that differs from one seismic code to another. In 

IBC-2012 [5] and ASCE/SEI 7-10 [4], k is related to fundamental period of the structure, 

which is equal to 1 or 2 for structures having a period of 0.5 sec or less, and for structures 

having a period of 2.5 sec or more, respectively. For structures having a period between 0.5 

and 2.5 sec, k is computed by linear interpolation between 1 and 2.5. Note that when k is 

equal to 1, the pattern corresponds to an inverted triangular lateral load distribution and the 

response of building, thus, is assumed to be controlled primarily by the first mode. While k 

equal to 2 corresponds to a parabolic lateral load pattern with its vertex at the base in which 

the response is assumed to be influenced by higher mode effects. 

 

 

5. OPTIMIZATION ALGORITHM FOR THE ACHIEVEMENT OF MINIMUM 

STRUCTURAL WEIGHT 
 

In this section, the optimization algorithm adopted by Ganjavi and Hao (2013) [24] for 

optimum elastic shear-strength distribution of soil-structure systems is modified to take into 

account for the inelastic behaviour of structures. In this approach, the structural properties 

are modified so that inefficient material is gradually shifted from strong to weak parts of the 

structure. This process is continued until a state of uniform deformation is achieved. In the 

present study, the seismic demand parameters used to quantify the structural damage and 

optimization criterion are the inter-story displacement ductility ratio (   ) and structural 

weight. The following step-by-step optimization algorithm is proposed for shear-building 

soil-structure systems to estimate the optimum inelastic lateral force distribution 

corresponding to the “minimum structural weight”: 

1. Select number of stories for MDOF soil-structure building and assign an arbitrary value 

for total stiffness and strength and then distribute them along the height of the structure 

based on the arbitrary lateral load pattern, e.g., uniform or triangular patterns. It will be 

noted that the lateral story stiffness is assumed as proportional to the story shear strength 

distributed over the height of the structure. 

2. Select an earthquake ground motion. 

3. Select key parameters for SSI effects including aspect ratio, H r , and non-dimensional 

frequency, 0a . 

4. Consider the fundamental period of fixed-base structure and scale the total stiffness 

without altering the stiffness distribution pattern such that the structure has a specified 

target fundamental period.  
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5. Select a target ductility ratio and Perform dynamic analysis for the soil-structure system 

subjected to the selected ground motion and compute the total shear strength demand, 

( )bs iV . If the computed ductility ratio is equal to the target value within the 1% of the 

accuracy, no iteration is necessary. Otherwise, total base shear strength is scaled (by 

either increasing or decreasing) until the target ductility ratio is achieved. To do this the 

following equation originally is proposed: 

 

max
1 i( ) ( ) ( )bs i bs

t

V V 


   (4) 

 

where ( )bs iV  is the total base shear strength of MDOF system at ith iteration; 
t and max

are respectively the target ductility ratio and maximum story ductility ratio among all stories. 

Parameter β is an iteration power which is more than zero. Results of this study show that 

for Inelastic state ( 1t  ) β value, depending on the fundamental period, can be 

approximately defined as 0.05 0.1    for fixT 0.5 and 0.1 0.25   for fix0.5 <T 1.5 and 

0.25 0.4   for fixT 1.5 . 

6. Calculate the coefficient of variation (COV) of story ductility distribution along the 

height of the structure and compare it with the target value of interest which is considered 

here 0.02. If the value of COV is less than the presumed target value, the current 

structural weight is regarded as minimum weight. Otherwise, the story shear strength and 

stiffness patterns are scaled until the COV decreases below or equal to the target value.  

7. Stories in which the ductility demand is less than the presumed target value are identified 

and their shear strength and stiffness are reduced. To obtain the fast convergence in 

numerical computations, the equations proposed by Hajirasouliha and Moghaddam 

(2009) [12] and Ganjavi and Hao (2013) [24] for respectively fixed-base systems and 

elastic soil-structure systems are modified for inelastic soil-structure systems as follows: 

 

1[ ] [ ] .[ ]i
i q i q

t

S S 


   (5) 

 

where [ ]i qS = shear strength of the ith floor at qth iteration, i =story ductility ratio of the 

ith floor and   = convergence parameter that has been considered equal to 0.1- 0.2 as the 

acceptable range by Hajirasouliha and Moghaddam (2009) [12] for elastic and inelastic 

fixed-base structures. Based on intensive analyses performed in the present study for soil-

structure systems in inelastic range of response, it is concluded that opposed to elastic state 

very lower values of α need to be utilized for convergence problem in inelastic response in 

comparison with those of elastic one. Results of this study show a constant value may not 

guaranty achieving the fastest convergence for all cases of soil-structure systems. Based on 

intensive nonlinear dynamic analyses on inelastic shear-building structures in which the 

Rayleigh-type damping is used for the damping modelling, α= 0.07 for 3t  and α= 0.1 for 

3t   are approximately proposed for convergence problem of soil-structure systems in 
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inelastic response. Now, a new pattern for lateral strength and stiffness distributions is 

obtained. 

8. Control the current maximum story ductility ratio ( max ) and refine the total base shear 

strength of soil-structure systems if max is not equal to the target value within the 1% of 

the accuracy. Otherwise, go to the next step. 

9. Control the current fixed-base period and modify it if it is not equal to the target value 

within the 1% of the accuracy. Otherwise, control the current Rayleigh-type damping 

coefficients and modify them if they are not equal to the previous values within the 1% 

tolerance. Otherwise, go to the next step. 

10. Convert the optimum shear strength pattern to the optimum lateral force pattern 

corresponding “minimum structural weight”. 

11. Repeat steps 1–10 for different number of stories, earthquake ground motions, key 

parameters ( H r  and 0a ), target periods and target ductility ratio. 

 

 

6. EFFICIENCY OF THE PROPOSED OPTIMIZATION TECHNIQUE  
 

To show the efficiency of the proposed method to achieve optimum weight for soil-structure 

systems in inelastic range of response the above algorithm is applied to the 10- and 20-story 

buildings with 
fixT = 1.5 sec, µ= 4, 8, H r = 3, and 0 3a   subjected to 15 simulated 

earthquakes. Figure 2 illustrates a comparison of the average height-wise distribution of 

story ductility demand resulted from utilizing three load patterns including (1) ASCE/SEI 7-

10 [4] (2) optimum patterns of fixed-base and (3) optimum patterns of soil-structure 

systems. As seen, there is a significant difference between the optimum pattern of soil-

structure systems and the other two patterns. It can be seen that while using the SSI optimum 

pattern results in a completely uniform distribution of the deformation, using both the 

ASCE/SEI 7-10 and fixed-base optimum patterns lead to a very non-uniform distribution of 

ductility demand along the height of the soil-structure systems in inelastic range of 

vibration. The efficiency of the proposed optimization procedure can be investigated by 

calculating the coefficient of variation (COV) of story ductility demand distribution along 

the height of structures. The COV is a statistical measure of the dispersion of data points, 

here ductility demand ratio along the building height. It is defined as the ratio of the ductility 

demand standard deviation to the mean ductility among all stories. For instance, based on 

the results presented in Fig. 2, the average COV values of story ductility demand 

distributions resulted from applying ASCE/SEI 7-10 [4] pattern, the fixed-base optimum 

pattern and SSI optimum pattern (proposed SSI) are respectively 44%, 54.7% and 0.4%, for 

10-story building with µ= 8. The corresponding values are also 39%, 62.5% and 0.5%, for 

20-story building with µ= 8. This indicates that SSI phenomenon through changing the 

dynamic characteristics of structures can more significantly affect damage distribution along 

the height of structures in inelastic range of response when compared to that of the elastic 

state. As a result, utilizing fixed-base optimum load pattern may not result in an optimum 

seismic performance of soil-structure systems and, thus, a more adequate load pattern 

accounting for both SSI effects and inelastic behaviour should be defined and proposed for 
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soil-structure system.  
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Figure 2. Mean story ductility patterns obtained from 15 earthquakes for buildings that were 

designed based on ASCE-7-10, fixed-base optimum patterns and proposed optimization 

algorithm for SSI systems ( 
fixT = 1.5 sec, H r =3, 0a =3), (a): 10 stories and (b): 20 stories 

 

The efficiency of the proposed optimum load pattern can also be investigated by 

comparing the structural weight index resulted from a given load pattern (here ASCE/SEI 7-

10 [4]) with that of the optimum load pattern corresponding to a given earthquake ground 

motion. In this study, structural weight index for a specific structure with given fundamental 

period, target ductility demand, non-dimensional frequency and aspect ratios is regarded as 

the seismic structural weight normalized by PGA and total structural mass. The loading 

pattern that corresponds to the “minimum weight index” is considered as the most adequate 

loading pattern i.e., optimum pattern [12, 24]. 
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Figure 3 shows the mean percentage of structural weight reduction of optimum structures 

with respect to those designed based on ASCE/SEI 7-10 [4] for the 10-story soil-structure 

systems with low (µ= 2) and high (µ= 6) level of nonlinearity and H r =3. It is clearly seen 

that even for the case of less SSI effect ( 0a =1) the optimum structures experience up to 56% 
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less structural weight as compared with the structures designed based on ASCE/SEI 7-10 [4] 

lateral load pattern. The efficiency of the optimum patterns will be more pronounced for the 

structures with longer periods in which higher mode effect is predominant. 

In another point of view, as mentioned above, the COV of ductility demand distribution 

along the building height could be used for assessing the efficiency of design load patterns. 

This is because the more uniform the ductility demand distribution, the better is the seismic 

performance of the structure. To this end, mean spectra of COV for different soil-stricture 

systems with 20 stories and with two levels of inelasticity designed based on ASCE/SEI 7-

10 [4] seismic code and proposed optimum patterns are depicted in 

 
. It is observed that for the structures designed in accordance to ASCE/SEI 7-10 [4] 

seismic code, increasing the soil flexibility and the ductility demands are generally 

accompanied by an increase in the mean percentage of COV of inter-story ductility 

demands. However, nearly for all the optimum structures regardless of the period range, soil 

flexibility and level of inelastic behavior the mean values of COV are less than 4% meaning 

uniform damage distribution along the height of structures. This demonstrates the the 

efficiency of the optimum proposed technique for soil-structure systems. 
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Figure 3. The percentage of structural weight reduction of optimum structures with respect to 

those designed based on ASCE/SEI 7-10 for the 10-story soil-structure systems; average of 15 

earthquakes; H r =3 

 
Figure 4. Mean COV% of inelastic fixed- base and soil–structure systems with 20 stories 

designed according to ASCE/SEI 7-10 load patterns; H r =3 
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Figure 5. Mean COV% of inelastic fixed- base and soil–structure systems with 20 stories 

designed according to proposed optimum algorithm; H r =3. 

 

 

7. SEISMIC LOAD PATTERN FOR OPTIMUM STRUCTURAL WEIGHT OF 

SOIL- STRUCTURE SYSTEMS 
 

To generalize the use of the proposed optimization algorithm for seismic design of soil-

structure systems, it is necessary to develop statistical models for estimating the optimal 

design lateral load pattern as a function of relevant structural and soil characteristics. 

Generally, it is believed that for design purpose, the design earthquake ground motion 

should be classified for each structural performance and soil type category. More reliable 

load pattern, then, can be obtained by commuting the mean values of optimum patterns 

associated to the design earthquakes compatible with each seismic design spectrum. 

Utilizing the proposed optimization algorithm, nearly 40,000 optimum lateral load patterns 

considering structural inelastic behaviour are derived for soil-structure systems [34]. For 

each fundamental period, dimensionless frequency, aspect ratio and ductility demand ratio 

the mean optimum load pattern corresponding to 21 matched earthquake ground motions are 

obtained. It is expected that designs based on the mean patterns would exhibit a more 

uniform damage (ductility demand) and less structural weight along the height of soil-

structure systems. Based on the results of the study carried out by the author and nonlinear 

statistical regression analysis, a new load pattern was proposed to incorporate the effect of 

inelastic behaviour for soil-structure systems as follows: 
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where 
iF = optimum load component at the ith story; 

fixT = fixed-base fundamental 

period; and 
ia , 

ib  and 
ic = constant coefficients of ith story which are functions of aspect 

ratio ( H r ), dimensionless frequency ( 0a ) and inter-story ductility demand (µ) that can be 

obtained in reference [34] for each level (relative height) of structure. As an instance, these 

constant coefficient for µ= 4 are provided in Tables 1 and 2. The adequacy of the proposed 

load pattern to achieve optimum structural weight for soil-structure systems will be 

investigated in the next section.  

 
Table 1: Constant coefficients of Eq. (6) as function of relative height (µ= 4) 

0a = 1  H r = 1   H r = 3   H r = 5  

Relative 

Height ia  
ib  

ic  
ia  

ib  
ic  

ia  
ib  

ic  

0.05 34.58 16.48 23.34 27.66 22.04 32.03 22.29 25.69 38.79 

0.10 31.59 13.70 26.23 26.94 16.14 30.51 23.52 18.26 33.32 

0.20 29.49 7.69 26.52 25.93 8.46 28.81 22.66 9.16 31.25 

0.30 28.62 4.28 26.46 25.18 3.79 27.93 22.60 3.30 29.34 

0.40 28.74 1.43 24.89 26.58 0.01 24.89 27.70 -2.45 20.78 

0.50 32.40 -2.01 19.10 32.51 -4.47 16.31 33.53 -6.99 12.90 

0.60 41.26 -6.91 5.44 40.61 -7.57 6.01 41.86 -9.66 3.98 

0.70 53.47 -10.17 -11.13 53.59 -10.56 -9.49 55.03 -11.79 -10.82 

0.80 66.76 -9.63 -25.45 69.98 -10.36 -26.91 72.42 -10.27 -27.52 

0.90 85.31 -6.69 -43.21 91.09 -5.26 -45.22 91.89 -3.04 -41.44 

1.00 133.12 5.90 -80.06 143.14 6.05 -89.06 144.81 10.38 -87.37 

 
Table 2: Constant coefficients of Eq. (6) as function of relative height (µ= 4) 

0a = 3  H r = 1   H r = 3   H r = 5  

Relative 

Height ia  
ib  

ic  
ia  

ib  
ic  

ia  
ib  

ic  

0.05 43.95 24.15 17.84 54.14 35.58 -7.15 83.83 32.70 -56.30 

0.10 38.78 18.66 21.89 34.50 31.80 18.86 57.41 31.28 -20.98 

0.20 34.69 9.15 22.29 14.09 21.79 44.55 17.88 27.43 34.45 

0.30 32.28 3.74 22.72 11.02 8.18 44.98 3.80 13.49 52.56 

0.40 33.27 -1.34 18.71 19.75 -5.08 29.46 4.80 -6.62 46.04 

0.50 35.86 -5.47 13.65 31.37 -12.37 13.92 14.49 -14.80 35.45 

0.60 40.38 -8.89 6.84 41.21 -15.80 4.28 29.69 -16.94 20.60 

0.70 48.30 -11.64 -3.87 51.44 -13.83 -2.48 48.69 -14.98 3.75 

0.80 59.61 -11.44 -17.21 68.95 -12.88 -18.92 72.82 -14.14 -19.71 

0.90 78.46 -6.27 -36.74 97.39 -9.71 -47.97 102.44 -9.35 -46.82 

1.00 126.75 8.70 -82.37 159.51 0.91 -115.0 176.30 -4.07 -128.67 
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8. ADEQUACY OF PROPOSED OPTIMUM LATERAL LOAD PATTERN FOR 

SOIL-STRUCTURE SYSTEMS 
 

The adequacy of the proposed load pattern (Eq.6) and ASCE/SEI 7-10 pattern [4] are 

investigated in this section for soil-structural systems through comparing the structural 

weight index which is related to the economy of the seismic resistant system. For this 

purpose, the values of weight index of the 10-story shear buildings designed based on the 

two patterns (i.e., proposed and ASCE/SEI 7-10 [4] patterns) for 28 fundamental periods 

ranging from 0.3 to 3 sec, two values of ductility demand, µ= 2 and 6, two values of aspect 

ratio ( H r =1, 3) and two values of dimensionless frequency ( 0a =1, 3) are calculated 

subjected to 20 matched earthquake ground motions. Then, the ratio of mean (average) 

values of weight index (RWI) associated to the two aforementioned patterns to those related 

to the optimum pattern are computed and illustrated in Figs. 5 and 6. Based on the results 

presented in these figures, it can be observed that for all ranges of period, nonlinearity and 

SSI effect, the load pattern proposed in this study gives superior results when compared to 

those of ASCE/SEI 7-10 [4] load patterns. The superiority is more pronounced for the cases 

of longer periods. As seen, the ratios of required to the optimum structural weight index for 

models designed with Eq. 6 are, on average, from 1.03 to 1.25 which can be considered as 

near optimum for practical purposes. Except for the cases of short periods with sever SSI 

effect and low level of nonlinearity, the efficiency of the code-compliant load pattern 

(ASCE/SEI 7-10 [4]) significantly diminishes. As an example, for the cases of average 

slenderness ratio with severe SSI effect with 
fixT = 2 sec, the values of structural weight for 

structures designed with load patterns of ASCE/SEI 7-10 [4] and Eq.6 (this study) are 

respectively 89.9% and 11.2% above the optimum weight in low inelastic response and 

89.5% and 12.5% above the optimum weight in high inelastic response. This implies that 

significant improvement is achieved by utilizing the proposed load pattern of this study for 

soil-structure systems with inelastic behavior. 
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Figure 5. The spectra of ratio of required to optimum weight for the 10-story SSI systems 

designed according to proposed and ASCE 7-10 patterns; average of 15 earthquakes (µ= 2) 

 

 
Figure 6. The spectra of ratio of required to optimum weight for the 10-story SSI systems 

designed according to proposed and ASCE 7-10 load patterns; average of 15 earthquakes (µ= 6) 

9. CONCLUSIONS 
 

An optimization methodology has been proposed for the achievement of minimum structural 

weight for flexible-base buildings under earthquake excitation taken into consideration of 
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SSI effects. Based on intensive numerical analyses of structural models with different 

structural and foundation conditions subjected to 21 earthquake ground motions, a new 

optimum load pattern has been proposed for structural design with consideration of SSI 

effect and structural inelastic behaviour. The efficiency of the proposed optimization 

algorithm were investigated by comparing the structural weight index and COV resulted 

from ASCE/SEI 7-10 [4] with those of the optimum load pattern corresponding to a given 

earthquake ground motion. It was concluded that even for the case of less SSI effect the 

optimum structures experience signaficantly less structural weight as compared with the 

structures designed based on ASCE/SEI 7-10 [4] lateral load pattern. The efficiency of the 

optimum patterns will be more pronounced for the structures with longer periods in which 

higher mode effect is predominant. Based on the results presented in this study, it was 

observed that for all ranges of period, nonlinearity and SSI effects, the load pattern proposed 

in this study generally gives superior results when compared to those of ASCE/SEI 7-10 [4] 

load patterns. The superiority is more pronounced for the cases of longer periods. More 

research works for more complex structural configurations and behaviour are deemed 

necessary for developing a practical methodology applicable to design and analysis of 

structures to earthquake ground motions. 
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